

Coastal communities in the Circumpolar North and the need for sustainable climate adaptation approaches

Nicole Bonnett, S. Jeff Birchall

School of Urban and Regional Planning, Department of Earth and Atmospheric Sciences, University of Alberta

UArctic Thematic Networks: Graduate Seminar on Climate Change Impacts and Responses in the Arctic

OUTLINE

Introduction

Context: Communities in the Circumpolar North

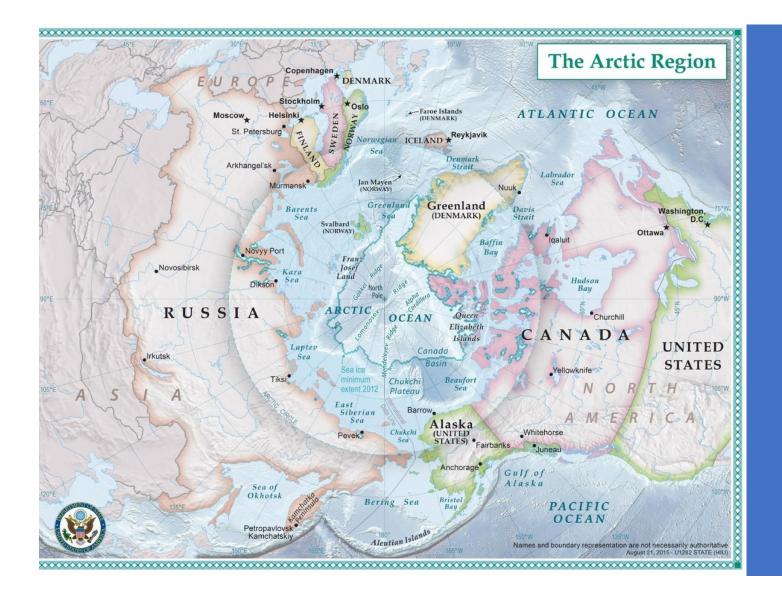
Taking Action: Overview of Adaptation Approaches

Adaptation Approaches in the Circumpolar North

Opportunities for Interventions

Conclusion

INTRODUCTION


- Research Problem:
 - Coastal communities in the Circumpolar North are particularly vulnerability to climate impacts.
 - Located in the northernmost part of the globe, this region is experiencing rates of climate change more rapid than anywhere else on earth!
 - Coastal vulnerability in the North will likely increase as future climate change is locked in.

INTRODUCTION

Research Problem:

- Adaptation strategies are intended to moderate or avoid harm associated with climate impacts.
- Although the urgency of adaptation is gaining salience among government decision-makers, adaptation planning is still in its infancy.
- Adaptation approaches are often reactionary and fragmented in practice, and in northern coastal communities, lack diversity.

CONTEXT

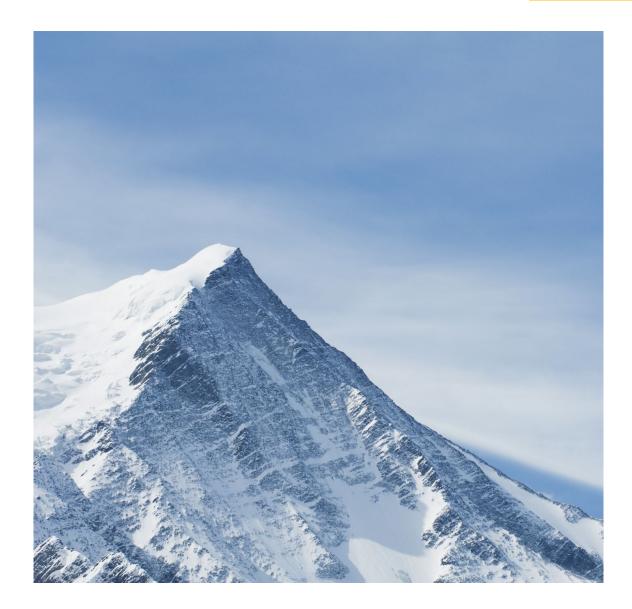
Where is the Arctic and how do we define the Circumpolar North?

- The Circumpolar North: the polar region located approximately 66.5° North of the equator.
- Definitions of the North can vary substantially and include descriptions based on:
 - temperatures
 - the Arctic tree line
 - permafrost zones
 - political and cultural surroundings

CONTEXT

Communities in the Circumpolar North in a changing climate

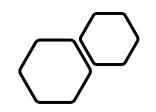
- Experiencing unprecedented increases in temperature.
- Sensitivity to environmental change is acute.
- Climate stressors pose a significant threat to assets, infrastructure, and human health and safety.


https://seagrant.uaf.edu/topics/environmental-hazards-alaskas-coasts/flooding-erosion/

EROSION IN SHISHMAREF, ALASKA

CONTEXT

Communities in the Circumpolar North in a changing climate


- These communities are often:
 - remotely located
 - sparsely populated
 - subject to a limited tax base
 - heavily dependent on marine resources

TAKING ACTION

525 C

Definition and classification		Examples	Benefits	Drawbacks	
Structural • •	Hard adaptation typology An infrastructural change or improvement that is intended to increase a community's resilience to climate impacts (Wenger, 2015)	 shoreline armoring levees sea walls drainage channels dams dykes elevated infrastructure (stilts) heat insulators 	 Commonly used and well understood Quick to install Associated with a visible sense of securion 	 Associated with rigidity Capital intensive ity Costly to maintain Contribute to environmental degradation 	
Non-Structural •	Soft adaptation typology Measures that focus on human behavior and aim to permit the continued use of vulnerable areas by managing climate risks primarily through planning, including the regulation of land use and development (Harman et al., 2015)	 planned relocation or retreat altered land use and building controls elevated floor requirements increased setbacks emergency management insurance 	 Greater flexibility in responding to climathreats More cost effective than structural adaptations 	 ate Social barriers challenge implementation Subject to institutional and politica constraints 	
Ecosystem- Based	Soft adaptation typology Protective strategies that leverage the adaptive opportunities associated with ecosystem services (Wilson & Forsyth, 2018; Jones et al., 2012)	 beach nourishment sand dune restoration wetland preservation rain gardens 	 Unobtrusive in nature Potential to enhance ecosystem health Additional recreation and aesthetic opportunities 	• Limited understanding of how to value ecosystem services in monetary metrics	

STRUCTURAL ADAPTATIONS

https://informedinfrastructure.com/21946/first-salish-sea-wide-shoreline-armoring-study-shows-cumulative-effects-on-ecosystem/

TAKING ACTION

1.4	Definition and classification		Examples	Benefits	Drawbacks	
S	tructural •	Hard adaptation typology An infrastructural change or improvement that is intended to increase a community's resilience to climate impacts (Wenger, 2015)	 shoreline armoring levees sea walls drainage channels dams dykes elevated infrastructure (stilts) heat insulators 	 Commonly used and well understood Quick to install Associated with a visible sense of security 	 Associated with rigidity Capital intensive Costly to maintain Contribute to environmental degradation 	
	Non-Structural •	Soft adaptation typology Measures that focus on human behavior and aim to permit the continued use of vulnerable areas by managing climate risks primarily through planning, including the regulation of land use and development (Harman et al., 2015)	 planned relocation or retreat altered land use and building controls elevated floor requirements increased setbacks emergency management insurance 	 Greater flexibility in responding to climate threats More cost effective than structural adaptations 	 Social barriers challenge implementation Subject to institutional and political constraints 	
	cosystem- Based	Soft adaptation typology Protective strategies that leverage the adaptive opportunities associated with ecosystem services (Wilson & Forsyth, 2018; Jones et al., 2012)	 beach nourishment sand dune restoration wetland preservation rain gardens 	 Unobtrusive in nature Potential to enhance ecosystem health Additional recreation and aesthetic opportunities 	 Limited understanding of how to value ecosystem services in monetary metrics 	

NON-STRUCTURAL ADAPTATIONS

Is this a sufficient setback from the coast?

TAKING ACTION

1 PAR		Definition and classification	Ex	amples		Bene	fits	Drav	vbacks	R
	Structural	 Hard adaptation typology An infrastructural change or impra community's resilience to climate 	ovement that is intended to increase te impacts (Wenger, 2015)		shoreline armoring levees sea walls drainage channels dams dykes elevated infrastructure (stilts) heat insulators	•	Commonly used and well understood Quick to install Associated with a visible sense of security	•	Associated with rigidity Capital intensive Costly to maintain Contribute to environmental degradation	
	Non-Structural	Measures that focus on human b	s by managing climate risks primarily equilation of land use and	:	planned relocation or retreat altered land use and building controls elevated floor requirements increased setbacks emergency management insurance	•	Greater flexibility in responding to climate threats More cost effective than structural adaptations	•	Social barriers challenge implementation Subject to institutional and political constraints	A RANGE AND
	Ecosystem- Based	 Soft adaptation typology Protective strategies that leverag associated with ecosystem servic al., 2012) 	e the adaptive opportunities es (Wilson & Forsyth, 2018; Jones et	•	beach nourishment sand dune restoration wetland preservation rain gardens	•	Unobtrusive in nature Potential to enhance ecosystem health Additional recreation and aesthetic opportunities	•	Limited understanding of how to value ecosystem services in monetary metrics	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADAPTATION APPROACHES IN THE CIRCUMPOLAR NORTH

- Small Northern coastal communities tend to rely on hard-armouring protection measures.
- Structural adaptations are:
 - quick to install and associated with a visible and perceived security
 - deteriorating.
- The effectiveness of structural approaches has been heavily debated

ADAPTATION APPROACHES IN THE CIRCUMPOLAR NORTH

- The conception and use of nonstructural adaptations is lagging in small Northern communities as a result of several constraints:
 - Institutional
 - Political
 - Capacity
- Many small northern communities have relocated buildings and infrastructure highly susceptible to climate hazards.

https://www.nytimes.com/2016/08/20/us/shishmaref-alaska-elocate-vote-climate-change.html

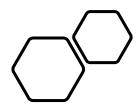
ADAPTATION APPROACHES IN THE CIRCUMPOLAR NORTH

- Ecosystem-based adaptations are not a common approach to addressing vulnerability in Northern communities.
- Unforgiving climate and sensitivity of ecosystems in the Arctic decreases the ability to utilize a range of ecosystem services to reduce vulnerabilities

OPPORTUNITIES FOR INTERVENTION

 It is recommended that existing structures be used in combination with soft adaptations to reduce costs and create a more robust response to climate stressors.

OPPORTUNITIES FOR INTERVENTION


- It is recommended that managed retreat not be overlooked.
- The relocation of residents and assets out of hazard-prone areas presents significant opportunities for risk reduction.

OPPORTUNITIES FOR INTERVENTION

- It is recommended that various forms of education programing be utilized to foster awareness and facilitate buy-in for adaptation (Ford et al., 2018).
 - local decision-makers attending workshops/conferences on climate vulnerabilities and adaptation
 - collaborating with climate experts
 - participating in research networks such as those organized through UArctic

CONCLUSION

 To enhance resilience, small northern coastal communities should adopt a diversified portfolio of adaptations that incorporate more sustainable non-structural and ecosystembased (or soft) adaptation approaches.

THANK YOU

Citations Listed

- Ford, J. D., Couture, N., Bell, T., & Clark, D. G. (2018). Climate change and Canada's north coast: research trends, progress, and future directions. *Environmental Reviews*, *26*(1), 82-92.
- Harman, B. P., Heyenga, S., Taylor, B. M., & Fletcher, C. S. (2013). Global lessons for adapting coastal communities to protect against storm surge inundation. *Journal of Coastal Research*, *31*(4), 790-801.
- Jones, H. P., Hole, D. G., & Zavaleta, E. S. (2012). Harnessing nature to help people adapt to climate change. *Nature Climate Change*, 2(7), 504-509.
- Wenger, C. (2015). Better use and management of levees: reducing flood risk in a changing climate. *Environmental Reviews, 23*(2), 240-255.
- Wilson, E. (2006). Adapting to climate change at the local level: the spatial planning response. *Local Environment*, *11*(6), 609-625.